GEOTECHNICAL ENGINEERING – PART I

Contents

Geotechnical Engineering – Part I	1
1.1 Introduction	2
1.1.1 contents	2
1.1.2 Geotechnical properties evaluation procedures	2
1.2 General	
1.3 Soil classification	
1.3.1 Methods of empirical identification of soils – introduction	4
1.3.2 Settling test – USDA classification system (U.S. Department of Agriculture)	5
1.3.2.1 Practice	5
1.3.3 HRB-AASHTO Classification system (UNI-CNR 10006-2002)	8
1.3.3.1 Practice	9
1.3.4 ASTM D2488 Classification System	
1.3.4.1 Practice	
1.3.5 Comparison tables between classification systems	16
1.3.5.1 AASHTO – USCS correlation	
1.3.5.2 USDA – USCS correlation	17
1.4 Evaluation of main geotechnical parametres	
1.4.1 Introduction	
1.4.1.1 Testless approach	
1.4.1.2 Test-based approach	24
1.5 Appendix 1:Sieve analysis	
1.5.1.1 Procedure	27
1.5.1.2 Data elaborating	27
1.6 Bibliography	

1.1 INTRODUCTION

1.1.1 CONTENTS

This chapter is divided into two parts:

- Part I focuses on straightforward yet rigorous procedures (i.e., adhering to current technical standards) for characterizing the geotechnical properties of soil;
- Part II covers practicals applications through quick and easy methods.

1.1.2 **GEOTECHNICAL PROPERTIES EVALUATION PROCEDURES**

The purpose of this document is to provide simple, quick, and reliable methods for determining soil geotechnical properties.

There are basically two procedures.

- A) The extended procedure involves two phases: soil classification followed by parameter extrapolation from technical literature (test-less approach). Filed tests can also be performed to validate the obtained results. This method is mainly recommended for earthworks such as dam or levee construction.
- B) The expedited procedure, easier and quicker than the previous one, involves parameter evaluation through field tests (test-based approach). This method is quite time-saving and the most common method in emergency contexts, especially for structure sizing purposes.

Procedures for geotechnical parameters estimation.

The extended procedure consists of the following stages:

- soil classification. Its main purpose is the identification of the ASTM-USCS class of the soil. This classification can be determined directly or indirectly through correspondence with other (simpler) classification systems such as USDA or AASHTO.
- **geotechnical parameters estimation**. Once the ASTM-USCS class is identified, the most probable values of geotechnical parameters can be easily extrapolated from the technical literature.

The expedited procedure consists of the following stages:

- **field tests**: rudimentary penetration tests and infiltration tests.
- geotechnical parameters estimation, through straightforward elaboration of the obtained results.

1.2 GENERAL

term	definition	formula	unit of measure
Porosity	percentage ratio of the volume of the voids V_{ν} to the total volume of the sample V	$n = V_v / V$	[%]
Void ratio	ratio of the volume of the voids V_{ν} to the volume of the solids V_{s}	$e = V_v / V_s$	-
Specific volume	ratio of the total volume of the sample v to its volume of the solids $V_{\rm s}$	$v = V / V_s$	-
Degree of saturation	percentage ratio of the volume of free water contained $V_{\rm w}$ to total volume of the voids $V_{\rm v}$	$S_r = V_w / V_v$	[%]
Moisture content	percentage ratio of the weight of water contained $P_{\rm w}$ to the weight of the sollid part $P_{\rm s}$	$w = P_w / P_s$	[%]
Bulk Unit weight	ratio of the weight of the sample P to its volume V	$\gamma_{\text{bulk}} = P / V$	[kN/m ³]
Dry unit weight	ratio of the weight of the solid part $P_{\rm s}$ to its volume V when $S_{\rm r}$ = 0%	$\gamma_d = P_s / V$	[kN/m³]
Saturated unit weight	ratio of the weight of the solid part $P_{\rm s}$ to its volume V when $S_{\rm r}$ = 100%	γ_{sat} = P / V when S _r = 100%	[kN/m ³]
Unit weight of solid part	ratio of the weight of the solid part P_{s} to its volume V_{s}	$\gamma_s = P_s / V_s$	[kN/m ³]
Submerged unit weight	saturated unit weight γ_{sat} minus unit weight of the water γ_w	$\gamma' = \gamma_{sat} - \gamma_w$	[kN/m ³]
Relative density or density index	ratio of maximum void ratio minus void ratio to maximum void ratio minus minimum void ratio	$D_R = (e_{max} - e) / (e_{max} - e_{min})$	[%]
Liquid limit	State in which the soil has the minimum moisture content to allow to close a groove engraved according to the standard test of the Casagrande		
Plastic limit	State in which the soil has the minimum moisture content to allow to mold a 3 mm diameter stick		
Plasticity index	Difference, expressed in percentage, between the moisture contents in liquid and plastic limit	PI = w _L - w _P	[%]

Table 1: definitions of the main geotechnical parameters

1.3 SOIL CLASSIFICATION

1.3.1 METHODS OF EMPIRICAL IDENTIFICATION OF SOILS – INTRODUCTION

"Empirical methods are processes aimed at identifying soil types and facilitating the evaluation of their key geotechnical parameters. The most commonly used classifications, listed in increasing order of complexity, are:

USDA Classification system

sedimentation / settling test

- HRB-AASHTO classification system (UNI-CNR 10006 EN ISO 14688-1:2017) sieve analysis (three sizes), two manipulative and one visual tests
- ASTM D2488 (USCS) calssification system

sieve analysis (four sizes), four manipulative and one visual tests.

A summary table of the methods is shown below.

Classification system	Coarse contents analysis	Fine contents analysis			
USDA	sedimentation / settling test				
HRB-AASHTO (UNI-CNR 10006 - EN ISO 14688-1:2017)	Sieve analysis mesh 2 mm (n.7 UNI – No.10 ASTM) mesh 0.4 mm (n.22 UNI) mesh 0.075 mm (n.37 UNI – No.200 ASTM)	dilatancy test toughness test organic / inorganic identification			
ASTM D2488 (USCS)	Sieve analysis mesh 75 mm (3 in.) mesh 4.75 mm (No.4 ASTM) mesh 0.425 mm (No.35 ASTM) mesh 0.075 mm (n.37 UNI – No.200 ASTM)	dry strenght test dilatancy test toughness test plasticity test organic / inorganic identification			

Table 2: comparison between different methods of soil classification

1.3.2 SETTLING TEST - USDA CLASSIFICATION SYSTEM (U.S. DEPARTMENT OF AGRICULTURE)

This classification method was primarily developed for agricultural purposes. The following practice is a simplified procedure that does not correspond to the recommendations provided by the USDA. For the USDA's recommended method, please continue reading.

The test is straightforward, but has the following limitations:

- it does not enable to estimate the gravel content;
- it does not offer any information about particle size of sand;
- It tends to underestimate clay content, as complete sedimentation may require a significant amount of time.

1.3.2.1 Practice

- 1. Fill 1/3 up tp 1/2 of clear glass / plastic jar (cylinder-shaped, if possible) with the soil to be analysed;
- 2. Fill almost all the remaining space with water (leave enough space for shaking);
- 3. Shake the jar et let the particles settle;
- 4. Directly mark on the jar the levels of the settled material at the times indicated in the following table;

Material	Settling time (approximately)
Sand	1 to 5 minutes
Silt	30 minutes – 2 hours
Clay	24 – 48 h

5. Measure the thickness of the layers and calculate the percentages of their volume;

Figure 1: settling / sedimentation test

6. Once the percentages of sand, silt and clay have been given, the soil class is inferred from the USDA texture diagram below and determine the soil class.

Figure 2: USDA soil texture diagram (example with 45% sand - 55% silt 20% clay soil sample)

Figure 3: USDA soil survey standard practice (from USDA, Soil Quality Teat Kit Guide, 2001).

7

1.3.3 HRB-AASHTO CLASSIFICATION SYSTEM (UNI-CNR 10006-2002)

This classification method was primarily developed for road engineering purposes, but it can also be properly utilized for dam or levee works. Accurate performance requires a sieve test and various manipulative tests.

٠

This standard has been replaced by the EN ISO 14688-1:2017.

With the field tests it is possible to identify the following soil categories:

- A1 stone fragments, gravel and sand
 - A2 silty or clayey gravel and sand
- A3 fine sand A4-A5 silt
- A6-A7 clay
 - A8 peat and organic soil

General classification	Granular Materials (35% or less passing the 0.075 mm / No. 200 sieve)							(>35%	Silt- passing th	Clay Mate ne 0.075 m	rials m / No. 20	0 sieve)	Peat and organic soil
Group	A1 A3			ļ	12		A 4	A 5	A 6	А	.7	A 8	
Sub-group	A 1-a	A 1-b		A 2-4	A 2-5	A 2-6	A 2-7				A 7-5	A 7-6	
Sieve analysis Percent passing 2 mm / No. 2 % 0.425 mm / No. 40 % 0.075 mm / No. 200 %	≤ 50 ≤ 30 ≤ 15	- ≤ 50 ≤ 25	- > 50 ≤ 10	- - ≤ 35	- - ≤ 35	- - ≤ 35	- - ≤ 35	- - > 35	- - > 35	- - > 35	- - > 35	- - > 35	
Characteristic of fraction passing sieve 0.425 mm / No. 40 Liquid limit (LL) Plasticity index (IP)	≤	-	- N.P.	≤ 40 ≤ 10	> 40 ≤ 10	≤ 40 > 10	> 40 > 10	≤ 40 ≤ 10	> 40 ≤ 10	≤ 40 > 10	> 40 > 10	> 40 > 10 ₽≤⊔-30	> 40 > 10 P≤⊔-30
Group index	(0	0	0	0	≤ 4	≤4	≤ 8	≤ 12	≤ 16 ≤ 20			
Usual types of significant constituent materials	Stone fra gravel a	agments, and sand	Fine sand	Silty	y or clayey	gravel and	sand	Silty soil Clayey soil		Peat or generic organic soil			
General rating as a subgrade (without ice)			Ex	cellent to good				Fair to poor			No to use		
Effect of frost on the bearing qualities of the subgrade soil (1)	None or slight				Me	dium		Very	high	Medium	High	Medium	
Shrinkage or swelling (1)	None None o			or slight		Slight or	medium	High	High	Very high			
Permeability (1)	ability (1) High			Medium or low				•		1	None or low	N	
On-site soil identification (1)	Particle detectat nake	es easily ble to the d eye	Harsh to the touch, in a granular state when dry	Most of th naked ey high te	Most of the particles are detectable to the naked eye. Harsh to the touch. Medium or high tenacity when dry indicates the presence of clay		Reac dilatan Pulverule little tena dry. No moldable	tive to cy test. ent or with city when ot easily when wet	Not react Ten: Easily stic	ive to dilata acity when moldable in cks when w	ancy test. dry. nto thin vet.	Fibrous, brown to black. Easily identifia ble by sight.	

(1) UNI-CNR 10006-2002

Table 3: HRB-AASHTO classification chart

1.3.3.1 Practice

The method consists of the following procedure.

Table 4: HRB-AASHTO classification procedure

- 1. Perform a sieve analysis with the following sieve sizes:
 - mesh 2 mm (No.10 ASTM E 11-70)
 - mesh 0.425 mm (No.40 ASTM E 11-70)
 - mesh 0.075 mm (No.200 ASTM E 11-70)

If the percent passing through the sieve No. 200 / 0.075 mm is greater than 35%, the soil is defined as silty-clay, otherwise granular;

2. If the soil is granular, with the sieve analysis it is possible to identify only the (sub)groups: A1-a, A1-b, A2 and A3;

- 3. If the soil is silty-clay the following tests have to been performed:
 - dilatancy test: mold a 25 mm diameter ball in the palm of one hand, add water, and flat it with a spatula. Then
 shake the sample by hitting with the other hand several times. If it releases water on its surface the soil is silty
 (A4-A5 group), otherwise clayey (A6-A7 group).

Figure 4: dilatancy test

• toughness test: asses how hard is make a 3 mm diameter stick. Easier it is to mold, greater the contents in clay.

Figure 5: toughness test

• a visual test that aims to asses if soil is inorganic or not. In the latter case the sample is dark, fibrous and probably lighter.

1.3.4 ASTM D2488 CLASSIFICATION SYSTEM¹

This soil classification is more detailed and complex than previous ones and requires more field tests. Specifically, the operator must perform a sieve analysis with four sizes and three manipulative tests.

Definition	Categories	Size range [mm]	ASTM sieve size	Plasticity properties
Boulders		>300	12 inches	-
Cobbles		75-300	3 – 12 inches	-
Gravel	coarse gravel	19 – 75	³ ⁄ ₄ - 3 inches	-
Gravei	fine gravel	4.75 - 19	No.4 - ¾	-
	coarse sand	2.00 – 4.75	No.10 – No.4	-
Sand	medium sand	0.425 – 2.00	No.40 – No.10	-
	fine sand	0.075-0.425	No.200 – No.40	-
Cilt	inorganic silt	<0.075	passing No.200	$PI \ge 4^2$, $[P; w_i]$ above "A" line
Sit	organic silt	<0.075	passing No.200	as above, with $w_{l,a} < 0.75 w_{lb}$
Clay	inorganic clay	<0.075	passing No.200	$PI \ge 4$, $[P; w_I]$ below "A" line
Ciay	organic clay	<0.075	passing No.200	as above, with $w_{\text{I},\text{a}}$ < 0.75 $w_{\text{I}\text{b}}$

Before introducing the procedure, note that the classification categorizes particles according to the following table:

1.3.4.1 Practice

Preparation

- 1. Perform a sieve analysis with the following sieve sizes:
 - mesh 75 mm (3 in.)
 - mesh 4.75 mm (No.4 ASTM E 11-70)
 - mesh 0.425 mm (No.35 ASTM E 11-70)
 - mesh 0.075 mm (n.37 UNI 2332 No.200 ASTM E 11-70)
- 2. Remove from the sample the portion retained by the 75 mm / 3 in mesh sieve (boulders and cobbles), noting its percentage (in volume);
- 3. Estimate the percentages of gravel (4.75 75 mm), sand (0.075 4,75 mm) and fine soil (< 0.075 mm), approximating them by multiple of 5%. If a portion is smaller than 5% it will be indicated as *trace*;
- 4. If the portion of fine material is more than 50%, the soil must be defined as *fine-grained soil*, otherwise *coarse-grained soil*. Continue following the procedure corresponding to the type of soil identified.

¹ Also known as United Soil Classification System (USCS)

² PI: Plasticity Index (see "General")

Table 5: ASTM classification procedure

Procedure for fine-grained soil classification

- a) Remove particles larger than the No. 40 sieve (medium sand and larger) until a specimen equivalent to about a handful of material is available;
- b) Dry strength test
 - Mold a 25 mm / 1 in. diameter ball (adding water if necessary);
 - From the previous material, make three 12 mm / 1/2 in diameter balls;
 - Dry the samples at temperature not higher than 60°. If natural lumps about 12 mm size are found, use them in place of balls;
 - Press the samples with fingers and identify their reaction from the table below.

Dry strength	Criteria
None	The dry specimen crumbles into powder with mere pressure of handling
Low	The dry specimen crumbles into powder with some finger pressure
Medium	The dry specimen breaks into pieces or crumbles with considerable finger pressure
High	The dry specimen cannot be broken with finger pressure. Specimen will break into pieces between thumb and a hard
Very high	The dry specimen cannot be broken between the thumb and a hard surface

c) Dilatancy test

- Mold a 25 mm / 1 in. diameter ball, adding water if necessary. Sample must be soft but not sticky;
- Flat the sample on the palm of one hand with a spatula or a knife;
- Shake horizontally, striking the side of the hand vigorously against the other hand several times. Note the reaction of water appearing on the surface of the soil;
- Squeeze the sample by closing the hand or pinching the soil between the fingers, and note the reaction in accordance with the criteria in the table below. The reaction is the speed with which water appears while shaking, and disappears while squeezing.

Dilatancy	Criteria
None	No visible change in the specimen
Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing
Rapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing

d) Toughness test

- Use the same sample of the dilatancy test to mold a 3 mm diameter stick;
- Fold the stick several times, continue to roll until it begins to break into smaller parts (condition that occurs at the
 plasticity index). Note the energy necessary to continue rolling in this condition in accordance to the table below.

Toughness	Criteria
Low	Only slight pressure is required to roll the thread near the plastic limit. The thread and the lump are weak and soft
Medium	Medium pressure is required to roll the thread to near the plastic limit. The thread and the lump have medium stiffness
High	Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness

e) Plasticity test

• During the toughness test, note the tendency of the sample to be molded, according to the table below:

Plasticity test	Criteria
Nonplastic	A 1/8 in. (3-mm) thread cannot be rolled at any water content
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit

f) Identification of inorganic / organic soils

Organic soils usually have:

- a strong organic odor;
- dark brown to black color, that could become lighter if exposed to the air;
- a spongy consistency during the toughness test;
- not high toughness or plasticity.

g) Group identification

Classifying	soil	according	the	table	helow.
Classilvillu	3011	according	แเธ	เฉมเต	

, ,		0		
Group	sigla	Dry strength	Dilatancy	Toughness and plasticity
silt	ML	None to low	Slow to rapid	Low or nonplastic
low plasticity or lean clay	CL	Medium to high	None to slow	Medium
high plasticity or elastic silt	MH	Low to medium	None to slow	Low to medium
high plasticity or fat clay	СН	high to very high	None	High
organic silt or clay	OL/OH		Identified as organic soil	

h) If greater precision is required, continue the identification according to the chart below.

GROUP SYMBOL

NOTE 1—Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %. FIG. 1a Flow Chart for Identifying Inorganic Fine-Grained Soil (50 % or more fines)

GROUP NAME

NOTE 1-Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %.

Figure 6: fine-grained soil classification chart

14

GROUP NAME

Procedure for coarse-grained soil classification

- a) Soil is defined as sand if sand percentage is greater than gravel percentage, otherwise it must be defined as gravel;
- b) If fine-particle percentage is not smaller than 10%, it must be classified according to the fine-soil procedure previously described above;
- c) The soil is defined as well-graded gravel or sand (GW o SW) if:
 - the range between the minimum and the maximum particle size is large;
 - and there is a considerable percentage of intermediate particle sizes.
 - The soil is defined as *poorly-graded gravel or sand* (GP o SP) if:
 - one particle size is most relevant above the others;
 - altough the particle size range is large, some sizes are obviously missing.
- d) the soil identification must be performed according the char below.

NOTE 1-Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %.

Figure 7: coarse-grained soil classification chart

1.3.5 COMPARISON TABLES BETWEEN CLASSIFICATION SYSTEMS

The purpose of this chapter is to provide conversion tables between different soil classification systems. Although the direct application of the USCS method is recommended, it is common practice (and time-saving) to use simpler methods such as the USDA, and then convert the identified class accordingly.

1.3.5.1 AASHTO – USCS correlation

Soil Group in	Comparable	e Soil Groups in	USCS
AASHTO System	Most Probable	Possible	Possible but Improbable
A-1-a	GW, GP	SW, SP	GM, SM
A-1-b	SW, SP, GM, SM	GP	-
A-3	SP	-	SW, GP
A-2-4	GM, SM	GC, SC	GW, GP, SW, SP
A-2-5	GM, SM	-	GW, GP, SW, SP
A-2-6	GC, SC	GM, SM	GW, GP, SW, SP
A-2-7	GM, GC, SM, SC	-	GW, GP, SW, SP
A-4	ML, OL	CL, SM, SC	GM, GC
A-5	OH, MH, ML, OL	-	SM, GM
A-6	CL	ML, OL, SC	GC, GM, SM
A-7-5	OH, MH	ML, OL, CH	GM, SM, GC, SC
A-7-6	CH, CL	ML, OL, SC	OH, MH, GC, GM, SM

Table 6: AASHTO to USCS conversion (Das 2009, extract from USCS and the USDA Soil Classification System – USACE ERDC 2015)

Soil Group in	Comp	Comparable Soil Groups in AASHTO System								
USCS	Most Probable	Possible	Possible but Improbable							
GW	A-1-a	-	A-2-4, A-2-5, A-2-6, A-2-7							
GP	A-1-a	A-1-b	A-3, A-2-4, A-2-5, A-2-6, A-2-7							
GM	A-1-b, A-2-4, A-2-5, A-2-7	A-2-6	A-4, A-5, A-6, A-7-5, A-7-6, A-1-a							
GC	A-2-6, A-2-7	A-2-4	A-4, A-6, A-7-6, A-7-5							
SW	A-1-b	A-1-a	A-3, A-2-4, A-2-5, A-2-6, A-2-7							
SP	A-3, A-1-b	A-1-a	A-2-4, A-2-5, A-2-6, A-2-7							
SM	A-1-b, A-2-4, A-2-5, A-2-7	A-2-6, A-4	A-5, A-6, A-7-5, A-7-6, A-1-a							
SC	A-2-6, A-2-7	A-2-4, A-6, A-4, A-7-6	A-7-5							
ML	A-4, A-5	A-6, A-7-5, A-7-6	—							
CL	A-6, A-7-6	A-4	—							
OL	A-4, A-5	A-6, A-7-5, A-7-6	—							
МН	A-7-5, A-5	-	A-7-6							
СН	A-7-6	A-7-5	—							
ОН	A-7-5, A-5	-	A-7-6							
Pt	_	_	_							

Table 7: USCS to AASHTO conversion (Das 2009, extract from USCS and the USDA Soil Classification System – USACE ERDC 2015)

1.3.5.2 USDA – USCS correlation

		USCS classification									
	SSURGO (20 WES (196: Wilson et al. (1	14) <i>Table 8</i> 1) <i>Table 9</i> 965) <i>Table 10</i>									
	Rollings and Rolling	s (1996) <i>Table 11</i>	Ayers et al. (2011)		Baylot et al. (2013)	FASST (2004)					
	Curus (200:	b) Table 12	Tabi	<i>e 13</i>	Table 14	Table 15	0				
USDA Classification	мр	Р	мР	Р	мр	MP	Consensus				
Sand	SM	SP-SM	SW, SP	-	SP	SP	SP				
Loamy Sand	SM	CL	SM	SC	SM	SM	SM				
Sandy Loam	SM	ML, CL	SM	-	SC	SM	SM				
Sandy Clay Loam	CL	SC	SC	-	SC	SC	SC				
Sandy <mark>C</mark> lay	SC, CL	_	SC	CL	SC	SC	SC,				
Loam	CL	ML	ML	-	CL	ML	CL				
Silt Loam	CL	ML	ML	-	SM	ML	ML				
Silt	ML	_	ML	_	ML	ML	ML				
Clay Loam	CL	-	CL, MH	-	CL	CL	CL				
Silty Clay Loam	CL	ML, CH	MH	-	CL	CL	CL				
Clay	CH, CL	GC	СН	CL	СН	СН	СН				
Silty Clay	CH, CL	_	CL, MH	-	CL	СН	СН				

MP: most probable attribution

P: probable attribution

Table 8: USDA to USCS conversion (extract from USCS and the USDA Soil Classification System – USACE ERDC 2015)

1.4 EVALUATION OF MAIN GEOTECHNICAL PARAMETRES

1.4.1 INTRODUCTION

As mentioned many times previously, there are basically two approaches for the rapid estimation of geotechnical parameters:

- test-less approach: this involves correlating the USCS soil class with the most probable values available in technical literature;
- test-based method, this roughly estimates the soil parametres trough site tests.

The undrained shear strength c_u and the degree of compaction cannot be evaluated without tests, due to their correlation with the local settlement process.

1.4.1.1 <u>Testless approach</u>

Once the USCS class is determined (or estimated), the tables below can be used to find the most probable corresponding parameter values.

Unit weight

Soil type	USCS class	Lo	oose	De	ense	Reference
		wet	saturated	wet	saturated	
Gravel	GP – GW	16.0	20.0	18.0	21.0	[2 cited by 1]
Well graded sand with gravel	SW	19.0	21.5	21.0	23.0	[2 cited by 1]
Coarse and medium sand	SP	16.5	20.0	18.5	21.5	[2 cited by 1]
Well-graded sand	SW	18.0	20.5	21.0	22.5	[2 cited by 1]
Fine or silty sand	SP – SM	17.0	20.0	19.0	21.5	[2 cited by 1]
Silt	ML	12,0	12,5	17,5	21,0	[4]
Elastic silt	MH	12,0	12,0	17,5	21,0	[4]
Very soft clay	CL – CH	1	4.0	1	8.0	[3 cited by 1]
Soft clay	CL – CH	1	5.0	1	9.0	[3 cited by 1]
Firm clay	CL – CH	1	6.5	2	20.5	[3 cited by 1]
Stiff clay	CL – CH	1	8.0	2	22.0	[3 cited by 1]
Hard clay	CL – CH	2	21.0	2	24.0	[3 cited by 1]
Organic silt	OM	1	4.0	2	21.0	[6]
Organic clay	OC	1	3.0	2	20.0	[6]
Peat	Pt	3,0	12,0	9,0	15,0	[1], [5]

References:

1. https://www.abg-geosynthetics.com/soil-properties-unit-weight.html

2. British Standards Institution, BS 8002:1994 - Code of Practice for Earth Retaining Structures;

3. British Standards Institution, BS 8002:2015 - Code of Practice for Earth Retaining Structures;

4. Coduto, 2001 cited by Elvesier Science, Geotechnolohy Compendium, 2000;

5. Eurocode 1991-1-1 Actions on structures - Part 1-1: Densities, self-weight, imposed loads for buildings, 2004;

6. NAVFAC DM 7.1 cited by http://www.geotechnicalinfo.com/soil_unit_weight.html

Angle of friction

Description		So	il friction a	angle [°]	Reference	
Description	USUS Class	min	max	specific value	Reference	
Well graded gravel, sandy gravel, with little or no fines	GW	33	40	-	[1],[2]	
Poorly graded gravel, sandy gravel, with little or no fines	GP	32	44	-	[1]	
Sandy gravels - Loose	(GW, GP)	-	-	35	[3 cited in 6]	
Sandy gravels - Dense	(GW, GP)	-	-	50	[3 cited in 6]	
Silty gravels, silty sandy gravels	GM	30	40	-	[1]	
Clayey gravels, clayey sandy gravels	GC	28	35	-	[1]	
Well graded sands, gravelly sands, with little or no fines	SW	33	43	-	[1]	
Well-graded clean sand, gravelly sands - Compacted	SW	-	-	38	[3 cited in 6]	
Well-graded sand, angular grains - Loose	(SW)	-	-	33	[3 cited in 6]	
Well-graded sand, angular grains - Dense	(SW)	-	-	45	[3 cited in 6]	
Poorly graded sands, gravelly sands, with little or no fines	SP	30	39	-	[1], [2]	
Poorly-garded clean sand - Compacted	SP	-	-	37	[3 cited in 6]	
Uniform sand, round grains - Loose	(SP)	-	-	27	[3 cited in 6]	
Uniform sand, round grains - Dense	(SP)	-	-	34	[3 cited in 6]	
Sand	SW, SP	37	38	-	[7]	
Loose sand	(SW, SP)	29	30	-	[5 cited in 6]	
Medium sand	(SW, SP)	30	36	-	[5 cited in 6]	
Dense sand	(SW, SP)	36	41	-	[5 cited in 6]	
Silty sands	SM	32	35	-	[1]	
Silty clays, sand-silt mix - Compacted	SM	-	-	34	[3 cited in 6]	
Silty sand - Loose	SM	27	33	-	[3 cited in 6]	
Silty sand - Dense	SM	30	34	-	[3 cited in 6]	
Clayey sands	SC	30	40	-	[1]	
Calyey sands, sandy-clay mix - compacted	SC	-	-	31	[3 cited in 6]	
Loamy sand, sandy clay Loam	SM, SC	31	34	-	[7]	
Inorganic silts, silty or clayey fine sands, with slight plasticity	ML	27	41	-	[1]	
Inorganic silt - Loose	ML	27	30	-	[3 cited in 6]	
Inorganic silt - Dense	ML	30	35	-	[3 cited in 6]	
Inorganic clays, silty clays, sandy clays of low plasticity	CL	27	35	-	[1]	
Clays of low plasticity - compacted	CL	-	-	28	[3 cited in 6]	
Organic silts and organic silty clays of low plasticity	OL	22	32	-	[1]	
Inorganic silts of high plasticity	MH	23	33	-	[1]	
Clayey silts - compacted	MH	-	-	25	[3 cited in 6]	

Description		S	Soil friction a	Reference	
Description	USUS Class		max	specific value	Reference
Silts and clayey silts - compacted	ML	-	-	32	[3 cited in 6]
Inorganic clays of high plasticity	СН	17	31	-	[1]
Clays of high plasticity - compacted	СН	-	-	19	[3 cited in 6]
Organic clays of high plasticity	ОН	17	35	-	[1]
Loam	ML, OL, MH, OH	28	32	-	[7]
Silt Loam	ML, OL, MH, OH	25	32	-	[7]
Clay Loam, Silty Clay Loam	ML, OL, CL, MH, OH, CH	18	32	-	[7]
Silty clay	OL, CL, OH, CH	18	32	-	[7]
Clay	CL, CH, OH, OL	18	28	-	[7]
Peat and other highly organic soils	Pt	0	10	-	[2]

References:

data are extracted from http://geotechdata.info/parameter/angle-of-friction.

1. Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers;

2. Jon W. Koloski, Sigmund D. Schwarz, and Donald W. Tubbs, Geotechnical Properties of Geologic Materials, Engineering Geology in Washington, Volume 1, Washington Division of Geology and Earth Resources Bulletin 78, 1989, Link;

3. Carter, M. and Bentley, S. (1991). Correlations of soil properties. Penetech Press Publishers, London;

4. Meyerhof, G. (1956). Penetration tests and bearing capacity of cohesionless soils. J Soils Mechanics and Foundation Division ASCE, 82(SM1);

5. Peck, R., Hanson, W., and Thornburn, T. (1974). Foundation Engineering Handbook. Wiley, London;

6. Obrzud R. & Truty, A. The Hardening soil model – a pratical guidebook Z Soil.PC 100701 report, revised 31.01.2012;

7. Minnesota Department of Transportation, Pavement Design, 2007

Cohesion (drained conditions)

Description			Cohesion	[kPa]	Deference	
Description	USCS class	min	max	specific value	Reference	
Well graded gravel, sandy gravel, with little or no fines	GW	-	-	0	[1],[2],[3],	
Poorly graded gravel, sandy gravel, with little or no fines	GP	-	-	0	[1],[2],[3]	
Silty gravels, silty sandy gravels	GM	-	-	0	[1]	
Clayey gravels, clayey sandy gravels	GC	-	-	20	[1]	
Well graded sands, gravelly sands, with little or no fines	SW	-	-	0	[1],[2],[3]	
Poorly graded sands, gravelly sands, with little or no fines	SP	-	-	0	[1],[2],[3]	
Silty sands	SM	-	-	22	[1]	
Silty sands - Saturated compacted	SM	-	-	50	[3]	
Silty sands - Compacted	SM	-	-	20	[3]	
Clayey sands	SC	-	-	5	[1]	
Clayey sands - Compacted	SC	-	-	74	[3]	
Clayey sands -Saturated compacted	SC	-	-	11	[3]	
Loamy sand, sandy clay Loam - compacted	SM, SC	50	75	-	[2]	
Loamy sand, sandy clay Loam - saturated	SM, SC	10	20	-	[2]	
Sand silt clay with slightly plastic fines - compacted	SM, SC	-	-	50	[3]	
Sand silt clay with slightly plastic fines - saturated compacted	SM, SC	-	-	14	[3]	
Inorganic silts, silty or clayey fine sands, with slight plasticity	ML	-	-	7	[1]	
Inorganic silts and clayey silts - compacted	ML	-	-	67	[3]	
Inorganic silts and clayey silts - saturated compacted	ML	-	-	9	[3]	
Inorganic clays, silty clays, sandy clays of low plasticity	CL	-	-	4	[1]	
Inorganic clays, silty clays, sandy clays of low plasticity - compacted	CL	-	-	86	[3]	
Inorganic clays, silty clays, sandy clays of low plasticity - saturated compacted	CL	-	-	13	[3]	
Mixture if inorganic silt and clay - compacted	ML-CL	-	-	65	[3]	
Mixture if inorganic silt and clay - saturated compacted	ML-CL	-	-	22	[3]	
Organic silts and organic silty clays of low plasticity	OL	-	-	5	[1]	
Inorganic silts of high plasticity - compactd	MH	-	-	10	[1]	
Inorganic silts of high plasticity - saturated compacted	MH	-	-	72	[3]	
Inorganic silts of high plasticity	MH	-	-	20	[3]	
Inorganic clays of high plasticity	СН	-	-	25	[1]	
Inorganic clays of high plasticity - compacted	СН	-	-	103	[3]	
Inorganic clays of high plasticity - satrated compacted	СН	-	-	11	[3]	
Organic clays of high plasticity	ОН	-	-	10	[1]	
Loam - Compacted	ML, OL, MH, OH	60	90	-	[2]	

Description			Cohesior	Reference	
Description	0000 01855		max	specific value	Reference
Loam - Saturated	ML, OL, MH, OH	10	20	-	[2]
Silt Loam - Compacted	ML, OL, MH, OH	60	90	-	[2]
Silt Loam - Saturated	ML, OL, MH, OH	10	20	-	[2]
Clay Loam, Silty Clay Loam - Compaced	ML, OL, CL, MH, OH, CH	60	105	-	[2]
Clay Loam, Silty Clay Loam - Saturated	ML, OL, CL, MH, OH, CH	10	20	-	[2]
Silty clay, clay - compacted	OL, CL, OH, CH	90	105	-	[2]
Silty clay, clay - saturated	OL, CL, OH, CH	10	20	-	[2]
Peat and other highly organic soils	Pt	-	-	-	-

Note: KPa = 100 DaN/mq = 0.01 DaN/cmq

References:

 data are extracted from http://geotechdata.info/parameter/cohesion

 1.
 Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers;

2.

Minnesota Department of Transportation, *Pavement Design*, 2007; NAVFAC Design Manual 7.2 - *Foundations and Earth Structures*,SN 0525-LP-300-7071, revalited by change 1 September 1986 3.

Permeability

Description	USCS	min (m/s)	max (m/s)	Specific value (m/s)	Reference
Well graded gravel, sandy gravel, with little or no fines	GW	5.00E-04	5.00E-02	-	[1]
Poorly graded gravel, sandy gravel, with little or no fines	GP	5.00E-04	5.00E-02	-	[1]
Silty gravels, silty sandy gravels	GM	5.00E-08	5.00E-06	-	[1]
Alluvial sand and gravel	(GM)	4.00E-04	4.00E-03	-	[2 & 3 in 4]
Clayey gravels, clayey sandy gravels	GC	5.00E-09	5.00E-06	-	[1]
Well graded sands, gravelly sands, with little or no fines	SW	1.00E-08	1.00E-06	-	[1]
Very fine sand, very well sorted	(SW)	-	-	8.40E-05	[5]
Medium sand, very well sorted	(SW)	-	-	2.23E-03	[5]
Coarse sand, very well sorted	(SW)	-	-	3.69E-01	[5]
Poorly graded sands, gravelly sands, with little or no fines	SP	2.55E-05	5.35E-04	-	[1], [2 & 3 in 4]
Clean sands (good aquifers)	(SP-SW)	1.00E-05	1.00E-02	-	[5]
Uniform sand and gravel	(SP-GP)	4.00E-03	4.00E-01	-	[2 & 3 in 4]
Well graded sand and gravel without fines	(GW-SW)	4.00E-05	4.00E-03	-	[2 & 3 in 4]
Silty sands	SM	1.00E-08	5.00E-06	-	[1]
Clayey sands	SC	5.50E-09	5.50E-06	-	[1], [5]
Inorganic silts, silty or clayey fine sands, with slight plasticity	ML	5.00E-09	1.00E-06	-	[1]
Inorganic clays, silty clays, sandy clays of low plasticity	CL	5.00E-10	5.00E-08	-	[1]
Organic silts and organic silty clays of low plasticity	OL	5.00E-09	1.00E-07	-	[1]
Inorganic silts of high plasticity	MH	1.00E-10	5.00E-08	-	[1]
Inorganic clays of high plasticity	СН	1.00E-10	1.00E-07	-	[1]
Compacted silt	(ML-MH)	7.00E-10	7.00E-08	-	[2 & 3 in 4]
Compacted clay	(CL-CH)	-	1.00E-09	-	[2 & 3 in 4]
Organic clays of high plasticity	OH	5.00E-10	1.00E-07	-	[1]

References:

data are extracted from http://geotechdata.info/parameter/permeability
Swiss Standard SN 670 010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers;

2. Carter, M. and Bentley, S. (1991). Correlations of soil properties. Penetech Press Publishers, London;

Leonards G. A. Ed. 1962, Foundation ENgineering. McGraw Hill Book Company; Dysli M. and Steiner W., 2011, Correlations in soil mechanics, PPUR; 3.

4.

5. West, T.R., 1995. Geology applied to engineering. Prentice Hall, 560 pp.

1.4.1.2 Test-based approach

Introduction

The procedure consists of two different tests:

- 1. a penetration test, which differs for coarse-grained soils and mixed/fine-grained soils. For coarse-grained soils, the friction angle is estimated through a preliminary evaluation of relative density. For mixed/fine-grained soils, cohesion is estimated through a preliminary evaluation of the degree of compaction;
- 2. An infiltration test, which involves measuring the percolation rate, is conducted to determine the soil's permeability.

Penetration test

Coarse-grained soils

Perform the test with a 2.5 Kg hand hammer, a 12 mm (1/2 in) diameter rod and a 50 mm (2 in) square wooden peg.

The table below is conceived for sands. In the case of gravel, add 4° to the friction angle values.

Density	Visual assessment ³	D _R [%] (Meyerhof)⁴	Friction angle φ (Meyerhof, 1974)
Very loose	A 12 mm ($\frac{1}{2}$ in) diameter rod can be pushed easily by hand into soil.	< 20	< 30°
Loose	Soil can be excavated with a spade. A 50 mm (2-in), square, wooden peg can easily be driven to a depth of 150 mm (6 in).	20 - 40	30° - 35°
Medium dense	Soil is easily penetrated with a ½-in rod driven with a 5-lb hammer.	40 - 60	35° - 38°
Dense	Soil requires a pick for excavation. A 50 mm (2-in), square, wooden peg is hard to drive to a depth of 150 mm (6 in).	60 - 80	38° - 41°
Very dense	Soil is penetrated only a few cm with a $\frac{1}{2}$ -in rod driven with a 5-lb hammer.	> 80	41° - 44°

Note: relative density is the ratio : $D_R = (e_{max} - e) / (e_{max} - e_{min})$ where e is the void ratio: $e = V_v / V_s$.

³ Soil Properties and Special Geotechnical Problems Related to Stream Stabilization Projects, Technical Supplement 14A Part 654 National Engineering Handbook (2007)

⁴ Bearing capacity of soil, Engineer Manual 1110-1-1905 Department of the Army U.S. Army Corps of Engineers (1992).

Fine-graded soils or mixed soils

The test can be easily performed with just by hand.

Saturated consistency	Visual assessment⁵	Estimated undrained shear strength c _u	Drained cohesion c'
Very soft	Thumb will penetrate greater than 25 mm (1 in). Soil is extruded between fingers	0 – 12 kPa	-
Soft	Thumb will penetrate about 25 mm (1 in). Soil molded by light finger pressure.	12 – 24 kPa	-
Medium	Thumb will penetrate about 6 mm (¼ in). Soil molded by strong finger pressure.	24 – 48 kPa	-
Stiff	Indented with thumb.	48 – 96 kPa	2.4 – 4.8 kPa
Very stiff	Indented by thumb nail.	96 – 192 kPa	4.8 kPa
Hard	Not indented by thumb nail.	> 192 kPa	4.8 kPa

Note: KPa = 100 DaN/mq = 0.01 DaN/cmq

The friction angle is related to the plasticity index, which cannot be easily estimated through visual field tests. As a precaution, $\Phi = 22^{\circ}$ can be assumed.

Infiltration test

An infiltration test can be easily performed in the field using rudimentary means. As will be shown later, the test requires complete saturation of the ground, which can take a considerable amount of time in fine-grained soils.

Figure 8: infiltration test

• Drive a plastic cylindrical surface into the soil to a minimum depth of 150 mm, leaving at least 150 mm above the surface. A 100 mm diameter pipe or a bottomless bucket can be adequately used for this purpose.

It is recommended to avoid using unlined holes in the ground, as infiltration through vertical walls can significantly affect the results by overestimating the permeability.

• Ensure complete saturation of the soil at the bottom of the pipe by filling it with water and waiting for the water to fully infiltrate;

⁵ Soil Properties and Special Geotechnical Problems Related to Stream Stabilization Projects, Technical Supplement 14A Part 654 National Engineering Handbook (2007)

- Once the soil has been saturated, the test can begin. Pour a measured quantity of water into the pipe and measure the thickness of the water layer above the soil surface. Record the water level drop at regular intervals of time. If the soil has been adequately saturated, the infiltration rate should remain approximately constant during the test;
- The permeability can be determined by calculating the ratio between the initial water depth and the time necessary for its complete percolation.

1.5 APPENDIX 1:SIEVE ANALYSIS

1.5.1.1 Procedure

The suggested minimum set of sieve sizes is: 4.75 mm (No. 4), 2.00 mm (No. 10), 0.425 mm (No. 40), and 0.075 mm (No. 200). Ensure the sample is completely dry. Carefully break down any clayey lumps before starting the test.

- Record the total weight of the sample;
- Arrange the sieves in a stack, with the largest mesh size on top and the smallest mesh size (pan) at the bottom;
- Shake the sieve stack thoroughly;
- Record the weight of the material retained on each sieve and, consequently, the passing percentage;
- Plot the data on a graph, with the vertical axis representing the percentage passing and the horizontal axis (preferably on a logarithmic scale) representing the sieve size.

1.5.1.2 Data elaborating

From the graph, the sizes corresponding to any passing percentage can be easily calculated by interpolation.

It is standard practice to use the following expression:

 D_x in millimetres where x is the passing percentage.

Usual parameters include D_{60} and D_{10} , where the latter is defined as *Effective Size* (ES).

The Sort Coefficient (SC) or Uniform Coefficient is defined as the ratio:

$$SC = D_{60} / D_{10}$$

A higher SC indicates a wider range of particle sizes, suggesting a more poorly graded (well-graded) soil, while a lower SC indicates a narrower range of particle sizes, suggesting a more uniformly graded (poorly graded) soil.

Another relevant parameter is the Coefficient of Curvature C_c which provides information about the distribution uniformity between the smallest and the largest particle sizes in the soil. It is defined as:

$$C_c = D_{30}^2 / (D_{10} D_{60}).$$

The USCS defines soil as well-graded when:

SC > 4 for gravel or SC > 6 for sand,

and
$$1 < C_c < 3$$
.

particles size [m	m] 3(JO 25	50 7	′5 1′	9 4.	.75 2.	.00 1.0	JO 0.	.50 0.4	25 0.2	25 0	.10 0.0)75 0.	.05
ASTM E11 sieve	e mest		- 3	in 3/4	lin Nr	o.4 Nc).10 No	.18 No).35 No	.40 No.	.60	- No.	200 -	-
		<u> </u>	'											
	CC haulder sabble gravel					sand						silt		
ASTIVI / USUS	boulder cobble		DIE	coarse	fine	coarse		medium fine					clay	
AACUTO	h	ulder / eehk			aroual				sa	nd			silt	
AASHIU	DL		le		graver			coarse			fine		clay	
	et	200	aabbla		gravel					sand				silt
USDA	510	ine i	CODDIE	coarse	medium	fine	very coarse	coarse	med	lium	fine	very	fine	clay

Figure 9: comparison between different soil classification systems

	ASTM E11	ISO 3310	UNI 2331/2332	TYLER	BS-410	DIN-4188
Mesh size	Mesh	Size	Mesh	Mesh	Mesh	mm
125.0mm	5in	125.0mm				125.0mm
112.0mm		112.0mm	-	-	-	112.0mm
106.0mm	4.24in	106.0mm	-	-	-	106.0mm
100.0mm	4in	100.0mm	-	-	-	100.0mm
90.0mm	3 1/2in	90.0mm	-	-	-	90.0mm
80.0mm		80.0mm	-	-	-	80.0mm
75.0mm	3in	75.0mm	-	-	-	75.0mm
71.0mm		71.0mm	-	-	-	71.0mm
63.0mm	2 1/2in	63.0mm	-	-	-	63.0mm
56.0mm	-	56.0mm	-	-	-	56.0mm
53.0mm	2.12in	53.0mm	-	-	-	53.0mm
50.0mm	2in	50.0mm	-	-	-	50.0mm
45.0mm	1 3/4in	45.0mm	-	-	-	45.0mm
40.0mm	-	40.0mm	-	-	-	40.0mm
37 5mm	1 1/2in	37 5mm	-	-	-	37 5mm
35.5mm	-	35.5mm	-	-	-	35.5mm
31.5mm	1 1/4in	31.5mm	-		-	31.5mm
28 0mm	-	28.0mm	-	-	-	28 0mm
26.5mm	1 06in	26.5mm	-	-	-	26.5mm
25.0mm	1in	25.0mm	-	-	-	25.0mm
22.4mm	7/8in	22 4mm	-	-	-	22 4mm
20.0mm	-	20.0mm	-	-	-	20.0mm
19 0mm	3/4in	19.0mm	-	-	-	19.0mm
18.0mm	-	18.0mm	-	-	-	18.0mm
16.0mm	5/8in	16.0mm	-		-	16.0mm
14.0mm	-	14.0mm	-	-	-	14.0mm
13.2mm	0.530in	13.2mm	_	-	-	13.2mm
12 5mm	1/2in	12 5mm	-	-	-	12 5mm
11.2mm	7/16in	11.2mm	-	-	-	11.2.0000
10.0mm	-	10.0mm	_	-		10.0mm
9.5mm	3/8in	9.5mm	-	-	-	9.5mm
9.0mm	-	9.0mm	-	-	-	9.0mm
8.0mm	5/16in	8.0mm	-		-	8.0mm
7 1mm	-	7 1mm	-	-	-	7 1mm
6.7mm	0.265in	6.7mm	_	-		6.7mm
6.3mm	1//in	6.3mm	-	-	-	6.3mm
5.6mm	No 3 1/2	5.6mm		No 3	No 3	5.6mm
5.0mm	110.3 1/2	5.0mm	-	110.5	110.0	5.0mm
1 75mm	No 4	4.75mm		No 4	No 3 5	4.75mm
4.75mm	110.4	4.750mm	-	110.4	110.3.3	4.750mm
4.00mm	No 5	4.00mm	No 1	No 5	No 4	4.00mm
4.00mm	110.5	4.00mm	INU. I	N0.5	110.4	4.00mm
3.35mm	- No 6	3.35mm	- No 2	- No 6	- No 5	3.35mm
2.55mm	1/9in*	2.15mm	No.2	N0.0	0.0	2.550000
2.10mm	No 7	3.15mm	No.4	- No 7	- No 6	2.1011111 2.90mm
2.00mm	INU.7	2.0011111 2.50mm	No.4	NU.7	110.0	2.0011111 2.50mm
2.30mm	- No 9	2.30mm	No.5	- No 9	- No 7	2.50mm
2.3011111	INU.O	2.3011111	INO.O	INU.0	INO.7	2.3011111
2.2411111	- No 10	2.2411111	- No 7	- No 0	- No 9	2.2411111
2.00mm	INO. IU	2.00mm	INO. /	10.9	0.0VI	2.00mm
1.80mm	- No 10	1.80mm	- N- 0	- No. 10	- No 10	1.80mm
1.70mm	INO.12	1.70mm	INO.8	NO.10	INO.10	1.70mm
1.00mm	- No 14	1.00mm	NO.9	- No 10	- No 12	1.00mm
1.40mm	INO. 14	1.40mm	INO. IU	INU. 12	INO. 12	1.40mm
	- N= 40	1.25mm	NO.11	-	- N= 4.4	1.20mm
1.18mm	NO.16	1.18mm	N0.12	N0.14	NO.14	1.18mm
1.12mm	-	1.12mm	-	-	-	1.12mm
1 00mm	I NO 18	1 00mm	No 13	NO 16	I NO 16	1 00mm

Table 9: standard sieve sizes (mesh size \geq 1 mm)

	ASTM E11	ISO 3310	UNI 2331/2332	TYLER	BS-410	DIN-4188
Mesh size	Mesh	Size	Mesh	Mesh	Mesh	mm
900µm	-	900µm	-	-	-	900µm
850µm	No.20	850µm	No.14	No.20	No.18	850µm
800µm	-	800µm	No.15	-	-	800µm
750µm	-	750um	No.16	-	-	750µm
710um	No.25	710um	No.17	No.24	No.22	710µm
630um	-	630um	No.18	-	-	630um
600µm	No.30	600µm	No.19	No.28	No.25	600µm
560um	-	560um	-	-	-	560um
500um	No.35	500um	No.20	No.32	No.30	500um
450um	-	450um	-	-	-	450um
425um	No.40	425um	No.21	No.35	No.36	425um
400um	-	400um	No.22	-	-	400um
355um	No 45	355um	No 23	No 42	No 44	355um
315um	-	315um	No 24	-	-	315um
300um	No 50	300um	No 25	No 48	No 52	300um
280um	-	280um	-	-	-	280um
250µm	No 60	250µm	No 26	No 60	No 60	250µm
200µm	110.00	200µm	110.20	-	110.00	2200µm
224µm	No 70	212 µm	No 27	No 65	No 72	212.um
200um	110.70	200um	No 28	110.00	110.72	200um
180um	No 80	180um	No 20	No. 80	No 85	180um
160µm	110.00	160µm	No 30	110.00	110.00	160µm
160µm	- No 100	150µm	No.31	- No 100	- No 100	150µm
140um	110.100	140um	10.01	110.100	110.100	140um
140µm	- No 120	140µm	- No 22	- No 115	- No 120	140µm
120µm	NU. 120	120µm	110.52	NU. 115	110.120	120µm
106um	- No 140	106um	- No 22	- No 150	- No 150	106um
100µm	110.140	100µm	No.33	NO. 150	110.150	100µm
100µm	- No 170	100µm	N0.34	- No 170	- No 170	100µm
90µm	NO.170	90µm	N0.30	NO.170	INO.170	90µm
80µm	- No 200	80µm	N0.30	- No 200	- No 200	δυμm
75µm	N0.200	75µm	10.37	N0.200	10.200	75µm
/ iµm	- No 020	7 iµm	- No 20	- No 050	- No 040	7 iµm
50µm	N0.230	50µm	100.30	N0.250	10.240	55µm
50µm	- No 070	56µm	-	- No 070	- No 200	50µm
55µm	N0.270	55µm	- No 20	NO.270	10.300	55µm
50µm	-	50µm	INO.39	-	- No 050	50µm
45µm	N0.325	45µm	-	N0.325	N0.350	45µm
40µm	-	40µm	N0.40	-	- N= 400	40µm
38µm	N0.400	38µm	-	N0.400	N0.400	38µm
36µm	-	36µm	-	-	-	36µm
32µm	N0.450	32µm	-	-	N0.440	32µm
28µm	-	-	-	-	-	28µm
25µm	N0.500	25µm	-	N0.500	No.500	25µm
22µm	-	-	-	-	-	22µm
20µm	No.635	20µm	-	No.625	No.625	20µm
15µm	-	-	-	N0.800	N0.800	15µm
10μm	-	10μm	-	No.1250	No.1250	10μm
5µm	-	5µm	-	No.2500	No.2500	5µm

Table 10: standard sieve sizes (mesh size < 1 mm)

1.6 BIBLIOGRAPHY

Technical literature

Naval Facilities Engineering Systems Command, DM 7.01, 1986

Università degli Studi di Firenze, J. Facciorusso, C. Madiai, G. Vannucchi, Dispense di Geotecnica, 2006

University of Zagreb, M. S. Kovačević, D. Jurić-Kaćunić, L. Librić, G. Ivoš, *Engineering soil classification according to EN ISO* 14688-2:2018, 2018

United States Department of Agriculture, Natural Resources Conservation Service, National Engineering Handbook (Technical Supplement 14A Part 654), Soil Properties and Special Geotechnical Problems Related to Stream Stabilization Projects, 2007

United States Department of Agriculture, *Natural Resources Conservation Service*, *National Engineering Handbook*, *Engineering Classification of Earth Materials*, 2012

U.S. Army corps of Engineers, Bearing capacity of soil, Engineer Manual, 1992

U.S. Army corps of Engineers, USCS and the USDA Soil Classification System, 2015

Technical standards

American Society for Standard and Materials International (ASTM), D2488-09a, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), 2009

British Standards Institution, BS 8002:1994 - Code of Practice for Earth Retaining Structures, 1994

British Standards Institution, BS 8002:2015 - Code of Practice for Earth Retaining Structures, 2015

Istituto Nazionale Unificazione, Comité Européen de Normalisation - Eurocode 1: Actions on structures -Part 1-1: Densities, selfweight, imposed loads for buildings, 2004

Web-sites

Geotechdata, www.geotechdata.info